Rapid Drug Development from First-in-Human to Proof-of-Concept: New Strategies

Dr John Lambert Director Early Phase Medical Affairs Chief Medical Officer

International Conference on Phase I Clinical Trials University of Hong Kong

26 April 2013

EARLY PHASE

PAREXEL.

Agenda

- Background
- Requirements to Accelerate Drug Development
- Case Studies complex combination protocol
 - proof of mechanism using disease models
 - CNS biomarkers
- Lessons learnt
- The future

Success Rates 1991-2000

- In general, most IMP's fail in clinical development
- the chance to become a medicine is 11% of all IMP's entering Phase I
- some therapeutic areas have even lower success rates

Source: Kola & Landis. Nat Rev Drug Discov, 2004

Learning Too Little Too Late

Right where you need us

Learning Too Little Too Late

Right where you need us

5

Phase I-IIa Success - Three Pillar Theorem: Proof of Mechanism + Proof of Concept

Morgan P. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival., Drug Discov Today. 2011 Dec.

Pfizer Analysis of 44 Studies (2005-2009)

	Pillar 1 and 2	Pillar 1,2,3	
Exposure confidence	<u>Total = 12</u> • 5 tested mechanism • 2 phase III starts	 <u>Total = 14</u> All 14 tested mechanism 12 tested mechanism & achieved positive POC 8 advanced to phase III 	Hi, Hi
		Case study 2: CCR5	
	None or partial Pillars	Pillar 2 and 3	
	<u>Total = 12</u> • 12 failed to test mechanism and all were phase II RIPs	<u>Total = 6</u> • 5 tested mechanism • No phase III starts	
Lo, Lo	Case study 1: D3		
	Pharmacolog	gy confidence	

Drug Discovery Today

Role Proof of Mechanism - Early Drug Development

- Assess pharmacological <u>response</u> to a drug
- Assess <u>characteristics</u> of the response:
 - Time to onset
 - Duration of response
 - Dose response relationship

Early Acquisition of Knowledge

9

PAREXEL Therapeutic Early Clinical Experience Phase I/IIa

Key Requirements for Rapid Development

Time Saving in Early Phase

Combined Adaptive Flexible designs

- Single and multiple dose
- Inclusion of special populations elderly, females, ethnic groups
- Food effect, drug interactions small patient cohorts, disease models

Aim is to obtain necessary data to move to next stage of development as quickly as possible

Adaptive Combination Protocol

Combination Flexible Study Designs

- Requires careful planning
- PK/PD modelling simulation at different stages
- Must be flexible
- Very clear rules for decision making
 - stopping
 - dose escalation
 - dose selection

Patients in Early Clinical Development

- Patients cohorts in multiple dose when drug has specific effects; minimal off target effects; predictable PK; limited drug-drug interactions
- Common patient groups obesity, diabetes, COPD, asthma, mild cognitive impaired, hypertension, hyperlipidemia, psoriasis
- Dedicated patient recruitment group
- Develop database of well documented patient groups and use pre evaluated external sites/investigators
- Dedicated team of staff project managers, CRAs, medical monitors for phase lb (Oncology) & Ila studies

If Patients cannot be recruited easily?

Use Human Disease Models in healthy subjects or other patient populations with similar target

Example 1: Experimental Pain Models

Numerous validated models

- Capsaicin
- UVB Sunburn
- Electrical Hyperalgesia

Various assessments e.g:

- Hyperalgesia / Allodynia
- Temperature perception
- Erythema (LDF)

Example 2: Inhaled Allergen Challenge

- Model of Asthmatic response (in atopic volunteers)
- Early and late phase response
- Good negative correlation with efficacy

Source: Fahy et al. Am J Resp. Crit. Care Med. 1997; 155:1828-1834

Caveats of Disease Models

- Must not obscure primary purpose Safety
- Must not add significantly to timeline
- Should not substitute for later phase evaluation
- Confidence in clinical pharmacology models varies by disease area
- Use of patients with similar target eg mild psoriasis patients developing immunomodulators for Crohn's disease vhere vou need us

Illustrative Case Studies

#1 Pain TRPV Receptor Antagonist

TRPV Receptor Antagonist: Early Phase Study Program

<u>Combination Protocol</u> – SAD/MAD UK

- Part 1 (FIH, SAD):
 - Single ascending dose, parallel group design (8 dose levels, n=9 HVs per cohort)
 - PoM: Heat pain perception test, warm water bath hand immersion test
- Part 2 (MAD):
 - Multiple dose, parallel group design (3 dose levels, n=12 HVs per cohort), 14 days treatment
 - PoM: Capsaicin flare test, Heat pain and mechanical pain perception on naive skin and UVB-Sunburn

PoC Study

- Osteoarthritis patients
- Multiple dose, parallel group design (3 dose levels, n=12 per cohort)
 PAREXEL.
 14 days treatment
- PoC: Pain VAS, WOMAC Scale

TRPV Receptor Antagonist: Link animal to human findings

Hot Plate Tail Flick Test

Heat Pain Tolerance Test

TRPV Receptor Antagonist: Link animal to human findings

Hindpaw Pinch Test

Pin Prick Test

TRPV Receptor Antagonist: Is the hypothesized mechanism affected by the drug?

Capsaicin

Capsaicin Cream Application

Practical Examples: TRPV Receptor Antagonist Is the hypothesized mechanism affected by the drug? Is there a dose response?

Neurogenic Flare Area (cm2)

50 mg

8h post-dose

pre

4h post-dose

Placebo

10mg

50mg

Right where you need us

10 mg

Placebo

50 mg

TRPV1 Receptor Antagonist: 44 weeks from FIH to PoC

Only need SAD healthy volunteer data to submit to MCC in MAD patient studies

OA Patient Enrichment Strategies for Pain compounds - FAST Assessments

- Prescreen OA patients
 Psychophysical response to induced thermal pain
- Various pre-defined thermal stimulus intensities delivered in a random order
- Subjects provide pain ratings using a computerized visual analogue scale (coVAS)
- A psychophysical function score (FAST) is derived from subjects' responses to reflect pain reporting ability

Optimise Pain Response by Enhancement of OA patients - FAST Score Quartiles

Poor pain reporters with OA cannot differentiate naproxen from placebo

Key Messages

- Combination adaptive protocol provides time savings of up to 30% and cost savings up to 20%.
- Advantageous use of 2 different regulatory environments UK and South Africa
- Validated sensory assessments and human disease models of pain to support PoM
- Access to patient populations using enhancement strategies if feasible

Illustrative Case Studies

#2 Alzheimer's disease Histamine 3 Receptor Antagonist NXE-00X1

Changes in our Conceptualization of Alzheimer's Disease: Implications for Early Drug Development

Mild Cognitive Impairment Patients' Diagnosed by:

- Amyloid PET
- CSF lumbar puncture using modified amyloid ADNI cutoff
 From: Hampel & Broich 2009

ISCTM Winter Meeting, Washington, Feb. 2010.

Histamine 3 Receptor Antagonist: Early Phase Study Program

NCE-00X1: Is the hypothesized mechanism affected by the drug? PAREXEL.

- Continuous Cerebrospinal Fluid (CSF)
 Sampling
- To demonstrate changes in amyloid beta and neurotransmitters
- Correlate doses with on-target mechanism of action
- 2 Panels of 12 MCI
- 14 day dosing
- CSF is collected for 36 hours after last dose on day 14

Ereshefsky L, et al. Biomark Med. 2009;3:711-721.

NCE-00X1: Is the hypothesized mechanism affected by the drug? PAREXEL.

CSF Amyloid beta 42 on Day 14

PAREXEL. Right where you need us

NCE-00X1: Provide guidance for initial clinical endpoint trials

Adverse Event (%)	10 mg	40 mg	80 mg	Placebo
Nausea/GI	14	21	37	8
Headache	9	11	15	12
Decreased Appetite	10	14	18	7
Tremor	2	3	7	2
Increased Systolic BP (>10 mm Hg)	3	5	11	3
Insomnia	14	16	25	7
Intense Dreams (Awakening)	4	6	10	2

- No clinically significant laboratory findings
- 10-mg dose considered not sufficiently active on CSF biomarker
- 80-mg dose considered poorly tolerated
- Proceed to Phase IIa study with 40 mg

Phase IIa Safety Study at Target Dose Efficacy: Alzheimer's Disease Assessment Scale (ADAS-Cog)

ITT/LOCF analysis. Simulation of response.

Right where you need us

- Combination adaptive protocol
- Validated CSF markers with known variability to assist sample size calculations
- Appropriate targeted renal safety markers
- Access to target patient populations mild cognitive impaired/Alzheimer's

Summary

- Early drug development complex
- Expand knowledge base early using disease models, biomarkers, PK/PD modelling and simulation
- Early access to special populations elderly, ethnic groups, others – and target patient populations; use of enhancement strategies
- Better use of historic internal data to optimise study design, biomarkers, safety measures and disease models – electronic data capture and "data mining"
 PAREXEL

Right where you need

Thank you

john.lambert@parexel.com

